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A B S T R A C T   

Island ecosystems are experiencing a significant decline in biodiversity, with forest biodiversity being particu
larly affected by several biodiversity erosion drivers. This alarming situation highlights the urgent need for 
conservation managers to develop more accurate and efficient tools to assess and monitor the quality status of 
sites. To address this issue, our study focuses on the development of two biological integrity indices (IBI) that 
utilize arthropod communities as indicators to measure the quality of forest sites. In accordance with studies that 
showed stratification of species diversity, we developed an IBI for canopy stratum (IBI-Canopy) and an IBI for an 
intermediate stratum targeting the forest understory (IBI-SLAM). We calibrated both indices on seven parameters 
for comparison purpose with a previous developed epigean IBI. Percentages of endemic, native non-endemic and 
introduced species richness and abundance were included in both indices. Percentages of Diplopoda species 
richness and abundance were included in IBI-Canopy and percentages of Saprophagous species richness and 
abundance were included in IBI-SLAM. As expected species richness and abundance of endemic species were 
negatively related to disturbance and selected for both IBI. Surprisingly, species richness and abundance of native 
non-endemic species were positively related to disturbance. The study highlights the limitations of single 
measurements in detecting all types of pressure sources, and proposes a multi-measurement system to provide a 
more comprehensive understanding of the overall system conditions. Our efficient and accessible indices 
confirmed low preservation status in Flores Island compared to Terceira and Pico, consistent with prior empirical 
studies. Our analyses also showed that canopy detect disturbance earlier than intermediate understory stratum. 
Our methodology has successfully been developed and tailored to the unique arthropod communities found in 
the Azores forests. While it may not be suitable for random forest sites, it can serve as a valuable source of 
inspiration for the development of arthropod-based IBIs in other islands of the world for which standardized 
endemic and exotic species richness and abundance could be obtained. The study also showed that arthropod 
assemblages mimicked forest biodiversity stratification and this is reflected in differences expressed by the IBIs.   

1. Introduction 

Global forest loss and fragmentation are pressing issues that threaten 
the health and sustainability of the world’s ecosystems (Haddad et al., 
2015; Hansen et al., 2010). Forest loss refers to the decline in forest 
cover over time due to human activities such as deforestation, land use 
changes, and infrastructure development (Vuyiya et al., 2014). 

Fragmentation, on the other hand, refers to the breaking up of contin
uous forest landscapes into smaller and more isolated patches. This 
fragmentation can lead to habitat loss, decreased biodiversity, and 
altered ecosystem functions (Ciccarese et al., 2012; Da Ponte et al., 
2017; Tadesse et al., 2014). 

Forests in islands are experiencing a significant decline in biodiver
sity, being particularly affected by several biodiversity erosion drivers 
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(Nogué et al., 2017). Azorean forests for instance have been deeply 
fragmented since human colonization. Up to 95% of forest area was 
clear in <600 years (Fernández-Palacios et al., 2011; Gaspar et al., 2011, 
2008; Triantis et al., 2010). Since then, cleared spaces were filled with 
intensive and semi-natural pasturelands, forest plantations of exotic 
trees, agricultural parcels and urban constructions. The remaining forest 
is now composed of isolated fragments of native and exotic forests. 
Although some exotic forest fragments support some endemic arthro
pods species (Tsafack et al., 2021), they are considered unsuitable 
habitat for most indigenous species. Native forest fragments in the other 
hand have been indicated by several studies as the ideal habitat for 
indigenous arthropods species particularly endemic species (Borges 
et al., 2017, 2020; Ribeiro et al., 2005). Native forests harbour several 
native trees species to which endemic species are strongly associated 
(Nunes et al., 2015; Tsafack et al., 2022). Moreover, because most of 
primary characteristics have been saved, native forests act as physical 
barriers to colonization of exotic species (Florencio et al., 2016). 
Therefore, native forests support larger and richer communities of 
indigenous species (Borges et al., 2008, 2006; Lhoumeau and Borges, 
2023a) than any other habitats including exotic forests, pasturelands or 
other agrosystems. 

However, Azorean native forests do not escape the current biodi
versity crisis (Boieiro et al., 2018; Cardinale et al., 2012; Terzopoulou 
et al., 2015; Triantis et al., 2010). Models predicted that 91 % of Azorean 
indigenous arthropod species will lose their climate space by the year 
2100 (Ferreira et al., 2016). In addition, recent studies pointed changes 
in arthropods species community structure characterized by an increase 
in abundance and diversity of exotic species over time (Borges et al., 
2020). 

Ongoing conservation programs of the Ministry of Climate Changes 
and Environment in Azores Archipelago are taking actions to restore 
native forest fragments with the implementation of several LIFE projects 
(LIFE IP NATURA, LIFE BEETLES, LIFE SNAILS). Those actions include 
the uprooting of alien plants (such as Hedychium gardnerianum), and in 
some mixed forest fragments, the removing of invasive exotic trees (for 
example Eucalyptus trees). Such management actions from public 
stakeholders rely on biological indicators that evaluate the biological 
integrity, conservation state and also the effectiveness of ongoing con
servation strategies in ecosystems (Hockings et al., 2000; Nicholson 
et al., 2012; Stephenson et al., 2022). Biological indicators have been 
promoted to inform status and trends in biodiversity dynamics with the 
aim to guide future biodiversity management actions or to measure the 
impact of actions conducted in sites. 

Common biological indicators are community structure estimators – 
species richness, diversity, dominance, evenness and rarity indexes – 
which have long been used to assess biodiversity dynamics (Fattorini 
et al., 2012; Hortal et al., 2006). Yet, those indicators present several 
disadvantages including their sensibility to sampling effort (Hortal et al., 
2006). In addition, single biological indicators fail to capture the 
complexity of biological assemblages. 

Multimetric indexes have been suggested as more accurate, efficient 
and simple to use indicators because they combine multiple parameters 
that individually capture different aspect of a system. They have proven 
their efficiency in several situations. For instance multivariate drought 
indices were developed in Varol et al. (2023) to monitor and assess the 
drought. Although most multimetric biological integrity indexes 
concern freshwater and marine environments (Zhu et al., 2021), few 
have been developed for terrestrial ecosystems including forested 
landscapes. 

In the path of global biodiversity indicators such as Red List index 
and Living Planet Index (Nicholson et al., 2012), Cardoso et al. (2007) 
developed a multimetric biotic integrity index (IBI) to access the capa
bility of Azorean forests in supporting stable epigean arthropod com
munities. Although Cardoso’s index presents many advantages 
including that it allows the comparison of sites with different sampling 
efforts and different areas, the index focused on epigean species 

collected with pitfall traps. Yet, studies showed that insect biomass and 
richness are sensitive to the type of trap (Busse et al., 2022; Uhler et al., 
2022; Work et al., 2002; Yi et al., 2012) and even to the type of pre
servative solution used in the traps (Kwon et al., 2022). In that sense, 
Cardoso’s IBI might be biased because it ignores other taxa groups, been 
focused on dwelling species collected with pitfall traps. Moreover, 
studies showed that the repartition of species was highly stratified (Ali 
and Yan, 2017; Haack et al., 2022; Yoshida et al., 2021) and therefore 
unevenly distributed when we consider vertical space, mainly due to 
habitat structure and variability in plant species composition (Ulyshen, 
2011). 

In Azorean long-term forest arthropods monitoring programs (Borges 
et al., 2018; Lhoumeau et al., 2022; Stephenson et al., 2022), three main 
types of sampling are used – Pitfall traps, canopy beating and SLAM 
traps – to collect respectively epigean, canopy and large spectrum 
arthropod communities. These programs aimed at capturing the most 
complete arthropod assemblages’ picture. The three types of samplings 
allow to incorporate the vertical variability of arthropod species 
community. 

Our primary objective was to create a robust biological index for 
evaluating forest biotic integrity in both the intermediate stratum (i.e. 
understory) and canopy stratum, utilizing Cardoso’s approach (Cardoso 
et al., 2007). We employed a combination of parameters related to 
species biogeographical categories and trophic groups, and identified 
key ecological parameters that were most affected by site disturbance 
through principal component analysis. Subsequently, we utilized a 
binomial generalized linear model to refine and extract the most influ
ential parameters to incorporate into the index. We intend to develop 
indices of biotic integrity that will be easily handled by forest managers 
as well as by scientists and easily used as a monitoring tool. 

In addition, we investigated how biological integrity in native forest 
varies along vertical stratification. For this second goal, we used IBI 
adapted to epigean, canopy and large spectrum arthropod community 
collected respectively with pitfall traps, canopy beating and SLAM traps. 
Finally, we compared the biotic integrity indices in native forest frag
ments of three Azorean islands (Flores, Pico and Terceira). With this 
approach we aim to demonstrate the utility of a multimetric index to 
monitor the habitat quality of island arthropod communities based on 
standardize sampling techniques. This type of indices and their appli
cation in monitoring programs are important, considering the current 
biodiversity crisis and the European Union (EU) Biodiversity Strategy 
for 2030. Moreover, the ongoing financial investments of the LIFE pro
gram for invertebrate conservation also need concrete monitoring tools 
for species in supporting the recovery of several threatened species and 
habitats. 

The study is innovative and important for three main reasons of 
general interest: (1) The study highlights the importance of arthropod 
species community to assess biotic integrity of forest sites filling the gap 
on forested lands (most multimetric indexes are developed for marine 
and freshwaters ecosystems) in the literature. (2) The indexes are easy to 
use and will serve conservation managers to assess biological integrity of 
forest sites in order to guide biodiversity management strategies in 
Azorean forest fragments. (3) The methodology can serve as a valuable 
source of inspiration for the development of arthropod-based IBIs in 
other islands of the world. 

2. Research areas and methods 

2.1. Study areas 

The Azores is an oceanic archipelago of nine volcanic islands located 
on the North Atlantic between 37◦–40◦ N latitude and 25◦–31◦ W 
longitude (Borges et al., 2010). The nine islands are dispersed on a 
WNW-ESE line extended for about 615 Km. This geographic dispersion 
divides the nine islands into three groups: the western group with Corvo 
and Flores, the central group with Faial, Pico, São Jorge, Graciosa and 
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Terceira and the eastern group with São Miguel and Santa Maria. The 
archipelago is characterized by a temperate humid oceanic climate with 
high levels of humidity, up to 95% at high altitudes native forests. The 
Azores have mild temperature all year around with small fluctuations 
due to ocean influence. Maximum mean temperature is reached in 
August, minimum in February and the mean annual temperature is 17 ◦C 
(Nunes et al., 2015; Santos et al., 2004). 

Landcover is currently dominated by intensively managed pastures 
and exotic forest fragments. Exotic forests are represented by plantations 
of Cryptomeria japonica D. Don (Cupressaceae) used for forestry, and 
patches of the invasive Pittosporum undulatum Vent. (Pittosporaceae). 
Native forests are evergreen forests dominated by endemic trees species 
and shrubs including Juniperus brevifolia, Laurus azorica and Erica azorica 
– trees and Vaccinium cylindraceum – shrub (Nunes et al., 2015; Tsafack 
et al., 2022). Currently, the past likely most dominant forest type 
Laurisilva (lowland and sub montane forests, with tall trees) is restricted 
to some patches at 500–700 m elevation (Elias et al., 2016). The current 
dominant forest occupies<5% of the original area and is dominated by 
the Juniperus–Ilex forests and Juniperus woodlands (Elias et al., 2016). 

Azores is part of the Mediterranean biodiversity hotspots and as such 
is monitored through several projects including projects by the Azorean 
Biodiversity Group on native and exotic forests arthropods. Under long- 
term monitoring studies (BALA I, II, III, SLAM projects) up to 25 years, 
arthropods are surveyed using different types of traps and therefore a 
massive among of data are made available to the public (Borges et al., 
2018; Lhoumeau et al., 2022). We used datasets from these databases to 
build the biotic integrity indices. 

2.2. A previous IBI: Epigeal arthropod community 

More than a decade ago, in an attempt to measure biological integ
rity of Azorean native forests for epigean arthropod communities, Car
doso et al., 2007 developed an index of biotic integrity. They built a 
robust multimetric index with seven taxonomical and ecological pa
rameters of arthropod communities selected among sixteen candidate 
parameters correlated to environment disturbance. The seven parame
ters include percentages of (1) endemic species richness; (2) predator 
abundance; (3) predator species richness; (4) native non-endemic spe
cies richness; (5) saprophagous species richness; (6) introduced abun
dance and (7) herbivore abundance. In addition to their strong relation 
with disturbance, these parameters were retained due to both, “desir
able scalability properties and relatively low correlation between them” 
(Cardoso et al., 2007). Taking these attributes into account, the IBI is 
reliable and is not influence by sampling effort. Moreover, the index 
allows to map the contribution of each metric to the total value of the 
multimetric integrity index. 

Despite the numerous characteristics that made this IBI robust and 
reliable to assess biological integrity of forests sites, one major limit is 
that the IBI is restricted for epigean arthropods community, and there
fore for ground-dwelling species. Consequently, the IBI will be biased if 
species communities included other species than ground-dwelling spe
cies such as highly mobile species or canopy adapted species. 

2.3. Construction of IBI-SLAM and IBI-Canopy 

2.3.1. Selecting data sets 
To construct the IBI, we used datasets from arthropods surveyed in 

native and disturbed forests. Arthropods were surveyed using two 
methods to collect different arthropod communities: a passive flight 
interception SLAM traps (Sea, Land and Air Malaise traps) for a mixed 
community species (Borges et al., 2022a; Borges et al., 2022b; Lhou
meau et al., 2022; Tsafack et al., 2021) and beating technique to collect 
canopy arthropod species (see Borges et al., 2016; Tsafack et al., 2022). 
Hereafter, we named these communities respectively SLAM-species 
community and Canopy-species community. 

Fourteen sites in native forest fragments and nineteen sites in 

disturbed forests were selected for the SLAM-species community (see 
also Tsafack et al., 2021), and twenty-four sites in native forest frag
ments and fourteen sites in disturbed forests for Canopy-species com
munity. Nomenclature and colonization status of species (endemic, 
native non-endemic and introduced) are based on the most recent 
checklist of Azorean arthropods (Borges et al., 2022c). 

We used data of arthropods sampled in summer 2019 for consistency 
with previous IBI calculations (Cardoso et al., 2007). SLAM samples 
were collected every three months in native forest and six months in 
disturbed forest. See companion papers (Borges et al., 2018; Tsafack 
et al., 2021; Lhoumeau et al., 2022) for more details on arthropods 
sampling and laboratory work for species sorting and identification. 

For direct access to the original Terceira Island SLAM data, consult 
Borges et al. (2022b) for exotic and native forests; Borges and Lhoumeau 
(2023) for arthropods (excluding spiders); and Borges and Lhoumeau 
(2023) for spiders. Canopy data can be consulted in Borges et al. (2016). 

2.3.2. Determining reference sites 
Among sites presented above, we selected those which were repre

sentative of each type of forest (i.e. native (preserved) versus exotic 
(disturbed) forests). The selection was based on Principal Component 
Analysis (PCA) of arthropod abundances in the different sites. For SLAM- 
species community, the two first PCA components explained 55.39% of 
the total variability and the biplot PCA showed five outlier sites (two 
native and three disturbed forest sites, Fig. 1A) which were excluded. 
For Canopy-species community, the two first PCA components explained 
49.76% of the total variability and the biplot PCA showed seven outlier 
sites (four native and three disturbed forest sites, Fig. 1B) that we 
excluded. 

2.3.3. Determining candidate parameters 
Referring to previous studies in Azores arthropod communities 

(Borges et al., 2020, 2018, 2006; Florencio et al., 2016; Rigal et al., 
2013), we selected in each species community (SLAM and Canopy) the 
parameters which were sensitive to environmental disturbance. In this 
study, sensitivity to environmental disturbance is measured with the 
strength and significance of the candidate parameter response to envi
ronmental change, it is the ability of the parameter to discriminate 
native (preserved) from exotic (disturbed) forest sites. Overall, 16 pa
rameters were retained as candidate parameters for the IBI-SLAM 
(Table 1) and 14 parameters for the IBI-Canopy (Table 1). For anal
ysis, we used values of parameters as percentages to obtain comparable 
values between sites. 

2.3.4. Testing and screening candidate parameters 
We proceeded with a screening using generalized linear modelling 

(GLM). We computed a GLM for each of the previous candidate pa
rameters (Table 1: 16 for IBI-SLAM and 14 for IBI-Canopy) to test the 
significance to discriminate native forests from disturbed forests. The 
forest type range follows binomial distribution with native forest set as 1 
and disturbed forest set as 0. GLMs were therefore ran with logit link 
function following the formula Type of forest = f (parameter). 

2.3.5. Standardizing and scoring the selected parameters 
Among several methods to standardize and score parameters of 

multimetric indexes, we adopted Cardoso et al. (2007)’s method where 
parameter values are ranked and the ranges divided in three, corre
sponding to three discrete scores of 0, 1, 2. 

The attribution of scores is based on the sign of the parameter esti
mates obtained in GLM models during the screening of candidate pa
rameters (Table 2). 

When the parameter estimate is positive, score 0 is attributed to the 
third of the parameter range that most represents disturbed forest sites, 
score 2 to the third that most represent native forest sites and score 1 to 
the third in between the previous two thirds. The inverse was done for 
parameters with negative GLM estimates (Table 2 and 3). 
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Fig. 1. PCA ordination plots with reference sites for IBI-SLAM (A) and for IBI-Canopy (B). Sites circled in blue were considered outliers and excluded from the 
reference sites dataset. Five outlier sites in SLAM-species community and seven outlier sites in Canopy-species community. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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The final IBI value is the sum of all parameters scores and ranges 
from 0 to 14 (Table 3). Sites of poor biological integrity will show an IBI 
value lower than 5; sites of moderate status, an IBI value between 5 and 
10 and sites of good biological integrity will show an IBI value higher 
than 10 (See Fig. 1S, 2S and 3S for examples). 

2.4. Evaluating IBIs: Case study in three islands 

To test the performance of IBI-SLAM and IBI-Canopy, we investi
gated the biotic integrity of native forest sites on three islands: Flores, 
Pico and Terceira (Fig. 2). We aimed at evaluating how accurate were 

IBI-SLAM and IBI-Canopy and how closer they were to the previous IBI- 
Epigean. Thus, in order to provide recommendations for forest managers 
on the choice of vertical compartment (soil, intermediate, canopy) to 
focus on when assessing the biological integrity of a forest site. To that 
aim, we compared the vertical variability of IBI on the same site and IBI 
values between the different islands. 

We selected datasets of arthropods surveyed in 2019 using methods 
(pitfall traps, SLAM traps and canopy-beating) that focus on three ver
tical strata representing respectively ground-dwelling, mixed, and can
opy arthropod species community. 

Overall, 12 sites were selected (four in each island, Fig. 2). Pitfall and 
canopy data for this purpose were obtained during the project BALA III 
and are part of a large dataset that will be published soon elsewhere (for 
equivalent BALA 1 and BALA II methodology see Borges et al., 2016). 
SLAM data can be assessed in Borges and Lhoumeau (2023) for spiders in 
Flores Island and other arthropods in all the three islands and also in 
Lhoumeau and Borges (2023b) for spiders in Pico and Terceira islands. 

2.5. Data analysis 

All analysis were performed within R environment (R Core Team, 
2022). The principal components analysis (PCA) was performed with 
FactoMineR package (Lê et al., 2008) to select the sites which were the 
most representative of a type of forest (preserved versus disturbed). 
Candidate parameters were analyzed using GLM with MuMIn R package 
to select parameters which most discriminated preserved forest sites 
from disturbed forest sites. Boxplots were used to compared IBI values 
(between islands and between monitoring methods). The significance of 
differences was assessed using analysis of variances. 

3. Results 

3.1. Screening of candidate parameters 

Of the 16 candidates’ parameters tested for their discriminatory 
ability in the SLAM data set, eleven parameters showed significant (p <
0.05) responses. For comparison purpose with the previous epigean IBI 
(Cardoso et al., 2007), we selected the seven parameters which were the 
most discriminant (p < 0.02) to include in the IBI-SLAM. Therefore, the 
IBI-SLAM was composed of percentages of endemic species (%sEnd), 
native species (%sNat) and saprophylic species (%sSap), and percent
ages of endemic individuals (%nEnd), introduced individuals (%nInt), 
saprophylic individuals (%nSap) and native individuals (%n Nat) 
(Table 2 IBI-SLAM). 

Of the 14 candidates’ parameters tested for their discriminatory 
ability in the Canopy data set, five parameters showed significant (p <

Table 1 
Candidate parameters sensitive to disturbance used to construct IBI-SLAM (16 
parameters) and IBI-Canopy (14 parameters).  

Candidate parameters IBI-SLAM IBI-Canopy 

nFong Fungivores individuals x  
sFong Fungivores species x  
nHerb Herbivorous individuals x x 
sHerb Herbivorous species x x 
nPred Predator individuals x x 
sPred Predator species x x 
nPred/Herb Generalist individuals x  
sPred/Herb Generalist species x  
nSap Saprophagous individuals x x 
sSap Saprophagous species x x 
nInt Introduced individuals x x 
sInt Introduced species x x 
nEnd Endemic individuals x x 
sEnd Endemic species x x 
nNat Native non-endemic individuals x x 
sNat Native non-endemic species x x 
nDipl Diplopoda individuals  x 
sDipl Diplopoda species  x  

Table 2 
GLM Estimates values of candidate parameters after testing their ability to 
discriminate preserved from disturbed forests sites. Selected parameters are 
highlighted in bold for IBI-SLAM and IBI-Canopy.  

Parameters Estimate St.dev Z-stat P-value Residual Deviance 

IBI-SLAM 
sEnd  14.73  5.06  2.91  0.003  19.58 
sSap  − 58.86  21.87  − 2.69  0.007  18.78 
nSap  − 21.20  8.02  − 2.64  0.008  16.87 
sNat  22.88  8.81  2.60  0.009  28.63 
nEnd  10.97  4.24  2.59  0.009  18.18 
nInt  − 35.90  14.10  − 2.55  0.010  11.62 
nNat  − 8.28  3.39  − 2.45  0.014  29.69 
sPred  25.14  10.64  2.36  0.018  29.23 
sPred/Herb  − 79.30  34.80  − 2.28  0.022  31.47 
sFong  55.39  26.23  2.11  0.034  32.97 
sInt  − 29.03  14.06  − 2.07  0.038  10.40 
nPred  − 14.37  8.09  − 1.78  0.075  31.47 
nPred/Herb  − 9.79  6.67  − 1.47  0.141  35.39 
nHerb  49.21  36.06  1.36  0.172  4.72 
nFong  − 7.06  12.55  − 0.56  0.573  37.90 
sHerb  3.72  7.13  0.52  0.602  37.97 
IBI-Canopy 
sEnd  0.38  0.14  2.77  0.006  16.85 
sNat  − 0.24  0.09  − 2.62  0.009  28.90 
nEnd  0.12  0.05  2.57  0.010  28.04 
sInt  − 0.32  0.13  − 2.56  0.010  28.32 
nNat  − 0.10  0.04  − 2.49  0.013  29.82 
nPred  0.04  0.02  1.91  0.056  36.02 
sSap  − 0.16  0.09  − 1.83  0.067  36.16 
sPred  0.08  0.05  1.60  0.110  36.89 
nDipl  − 1.58  1.02  − 1.54  0.123  37.80 
nSap  − 0.08  0.05  − 1.50  0.133  37.86 
sDipl  − 0.30  0.24  − 1.27  0.204  38.59 
nHerb  − 0.02  0.02  − 1.15  0.251  38.96 
sHerb  − 0.04  0.05  − 0.80  0.421  39.66 
nInt  − 0.03  0.06  − 0.51  0.608  40.06  

Table 3 
Quantitative values for each metric and scores for the IBI-SLAM and for the IBI- 
Canopy.  

Parameters Score 0 Score 1 Score 2 

IBI-SLAM 
%sEnd <18 18–30 >30 
%sSap >25 20–25 <20 
%nSap >33 14–33 <14 
%sNat <38 38–46 >46 
%nEnd <35 35–63 >63 
%nInt >19 5–19 <5 
%nNat >47 33–47 > 33 
IBI-Canopy 
%sEnd <39 39–49 >49 
%sNat >33 28–33 <28 
%nEnd <53 53–62 >62 
%sInt >24 19–24 <24 
%nNat >40 30–40 <30 
%nDipl >1 0–1 <0.1 
%sDipl >3 2–3 <2  
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0.05) responses. To have the same number of parameters (7) as for the 
epigean IBI (Cardoso et al., 2007), we selected the five most discrimi
nant (p < 0.05) parameters and added the percentage of species richness 
and abundance of the Diplopoda species (mostly composed by the 
invasive species Ommatoiulus moreleti (Lucas, 1860)) because of their 
surprising presence in canopy while they are ground-dwelling species 
(Silva et al., 2008). As a consequence of invasion of native forest, they 
are equally present in native and disturbed forests. Therefore, the IBI- 
Canopy was composed of percentages of endemic species (%sEnd), 
native species (%sNat), introduced species (%sInt) and Diplopoda spe
cies (%sDipl), and percentages of endemic individuals (%nEnd), native 
individuals (%n Nat) and Diplopoda individuals (%nDipl) (Table 2 IBI- 
Canopy). 

3.2. Calculating parameters standards 

For IBI-SLAM, resulting from the GLMs, three parameters showed 
positive estimates (%sEnd, %sNat, %nEnd) and four showed negative 
estimates (%sSap, %nSap, %nInt, %nNat). Standards for the first 
parameter were as follows: %sEnd < 18, score 0; 18>%sEnd > 30, score 
1 and %sEnd > 30, score 2. Standards of the remaining parameters are 
presented in Table 3 IBI-SLAM. 

For IBI-Canopy, two parameters showed positive estimates (%sEnd, 
%nEnd) and five showed negative estimates (%sInt, %sNat, %nNat, % 
sDipl, %nDipl). Standards for the first parameter were as follows: %sEnd 
< 39, score 0; 39>%sEnd > 49, score 1 and %sEnd > 49, score 2. 
Standards of the remaining parameters are presented in Table 3 IBI- 
Canopy. 

3.3. Evaluating biological integrity indices using data matrices from three 
Azorean islands 

IBI between islands were not different whatever the index (Fig. 3A). 
However, mean values of IBI varied in order Flores < Pico < Terceira 
and the variance was greater in Flores followed by Pico and Terceira 
showed the lowest variance (Fig. 3A). Then, considering all islands 
together, IBI-SLAM showed significant higher values than IBI-Canopy 
and IBI-Epigeal (Fig. 3B). IBI values at epigeal stratum were lower 
than Canopy’s but the difference was not significant (Fig. 3B). 

When we compared the three forest strata for each island, no sig
nificant difference was observed (Fig. 4) except in Pico island (Fig. 4 
PIC) where IBI-SLAM was significantly higher than IBI-Canopy and IBI- 
Epigeal indicating that understory stratum is better preserved than 
ground or canopy strata in Pico island whereas the three strata seem to 
be similarly preserved in Flores and Terceira (Fig. 4 FLO and TER). 

No difference was observed when we compared different islands for 
the same IBI (Fig. 5), but variance was clearly greater in Flores. 

4. Discussion 

We developed arthropod based multimetric indices to assess bio
logical integrity (IBI) of Azorean native forests. Knowing that species 
composition of communities varies with forest strata, we developed two 
IBI, one describing forest canopy stratum (IBI-Canopy) and the other 
describing the intermediate stratum (IBI-SLAM) to complement a pre
vious IBI developed for epigeal stratum (IBI-Epigeal) (Cardoso et al., 
2007). Biogeographic colonization status origin (Endemic, Native non- 
endemic and introduced species), trophic group (Predators, Herbi
vores, Saprophagous), taxonomic richness and abundance were 
included as parameters to build the multimetric indices. We selected 

Fig. 2. Location of Islands and sites of the case study testing the use of IBI-SLAM and IBI-Canopy (FLO- Flores, PIC- Pico and TER- Terceira).  
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seven parameters for each index, over 16 candidate parameters for IBI- 
SLAM and over 14 candidate parameters for IBI-Canopy. 

4.1. Construction of IBI-SLAM and IBI-Canopy 

Combining previous knowledge on Azorean forests and an ordina
tion analysis, we extracted reference sites which for one group repre
sented near pristine forest sites and for the other disturbed forest sites. 
For most studies that constructed IBIs (Kane et al., 2009; Wilson et al., 
2013; Zhu et al., 2021), reference sites referred to the most preserved 
sites but, in our study, we found important to represent both preserved 
and disturbed sites (see also Cardoso et al., 2007). Therefore, all 
candidate parameters were parameters able to discriminate near pristine 
forest sites from disturbed forest sites. The final multimetric IBIs 
included parameters expressing biogeographic colonization status 
origin, trophic group and taxonomical richness and abundance of 

species in communities. 
Within biogeographic colonization status origin-factors, endemic 

richness (sEnd) and abundance (nEnd) were selected for both IBIs (IBI- 
SLAM and IBI-Canopy) and were negatively related to disturbance. The 
negative relation observed is possibly a consequence of the ecological 
preferences of endemic species for a complex combination of habitat 
conditions that are disrupted in disturbed forests: a complete dominance 
of endemic tree species; a complex cover of ferns in the understory; a 
dominance of bryophytes covering all strata of the forest including parts 
of the soil (Gaspar et al., 2008). In disturbed forests invaded by some 
exotic plants, both the cover of ferns and bryophytes decrease and 
habitat structure changes dramatically compared to pristine forests. Our 
finding supports the previous multimetric epigeal IBI which similarly 
included sEnd (Cardoso et al., 2007) with a negative relation to distur
bance. This means that island forest sites with high species richness and 
abundance of endemic species are efficiently indicative of well- 

Fig. 3. IBI values for all samples: Comparison between islands ((A) Flo-Flores, PIC-Pico and TER-Terceira)) and between the three forest strata ((B) ground- 
understory and Canopy strata) for all samples. Different letters above the boxplots indicate significant differences based on the Tukey test (p < 0.05). No signifi
cant difference was observed between islands (A) but overall IBI-SLAM values were significantly higher than IBI-Epigeal (P = 0.019) and IBI-Canopy (P = 0.045) (B). 

Fig. 4. IBI values in the three islands: Comparison of the three forest strata (methods) in each island (FLO- Flores, PIC- Pico and TER- Terceira). Different letters 
above the boxplots indicate significant differences based on the Tukey test (p < 0.05). No significant difference was observed except in Pico where IBI-SLAM was 
significantly higher than IBI-Epigeal (P = 0.02) and IBI-Canopy (P = 0.01). 
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preserved forest sites. 
Native non-endemic species richness (sNat) and abundance (nNat) 

were significantly related to disturbance in both strata (canopy and in
termediate strata) and were therefore included in the multimetric IBIs. 
However, the sign of the relation with disturbance varies with the strata 
considered. In canopy stratum (IBI-Canopy) we found that sNat and 
nNat increased with disturbance. This is surprising because native non- 
endemic arthropod species are usually related to naturalness of sites 
(Cardoso et al., 2009; Florencio et al., 2016; Florencio et al., 2013) and 
showed high fidelity to sites of least disturbed native forest (Florencio 
et al., 2016). However, it has been suggested that some generalist native 
non-endemic species are well installed in disturbed forest sites (Tsafack 
et al., 2021) contrary to specialist species which are less tolerant to 
environmental changes. For the IBI-SLAM, parameter nNat was also 
positively related to disturbance whilst sNat was negatively related to 
disturbance. Regarding the response of abundance of native non- 
endemic species (nNat), the same explanation as at canopy stratum 
may be applied at this intermediate stratum. But regarding sNat, the 
hypothesis that native non-endemic arthropod species are strongly 
imbedded to native plant species present in preserved sites is validated. 

As expected, parameters related to introduced species (sInt and nInt) 
were positively related to disturbance. Unlike indigenous species, 
introduced species were more abundant and richer in exotic forest 
because they are more tolerant to environmental changes (Cardoso 
et al., 2007, 2009; Meijer et al., 2011; Tsafack et al., 2021). Indeed, sInt 
was included in IBI-Canopy and nInt was included in IBI-SLAM. 

Within factors related to trophic group, species richness (sSap) and 
abundance (nSap) of saprophagous were positively related to distur
bance and included in IBI-SLAM. This finding is also similar to previous 
epigeal IBI (Cardoso et al., 2007) in which saprophagous species rich
ness was also positively related to disturbance. Although studies showed 
that saprophagous species communities tend to flourish in stable sys
tems characterized with stable abiotic factors, saprophagous species 
communities in Azorean forest are mostly introduced species with high 
capacity of invasion which ease their access in native as well as in exotic 
forest fragments. Species richness of predators and fungivores in SLAM 
community were negatively related to disturbance but they were not 
included in the index because they were ranked after the seven pa
rameters included in the multimetric index. Trophic group variables 
seem to be less important than biogeographical colonization status in
dicators at canopy stratum and were not included in the IBI-Canopy. 

Although parameters Diplopoda species richness (sDipl) and abun
dance (nDipl) did not significantly discriminate near pristine sites from 
disturbed, we added them in IBI-Canopy because of their surprising 
presence in canopy while they are ground-dwelling species. In addition, 
we found that the invasive saprophagous Diplopoda species O. moreleti 

which is characteristic of disturbed habitats dominated canopy samples. 
For these reasons, we added sDipl and nDipl in IBI-Canopy index with a 
negative sign to correlate their ecological feature. The invasive species 
O. moreleti is also currently spreading in native Laurel forests of Canary 
Islands (Pedro Oromí, pers. Com.) and can be used as an early indicator 
of disturbance within arthropod communities in Macaronesian 
archipelagoes. 

4.2. Case study: Comparing islands and strata using IBI-Canopy and IBI- 
SLAM 

We used a database of arthropods species sampled in different strata 
in three islands with different forest conservation status to test the 
reliability of biotic integrity indices. We investigated and compared 
biological integrity between strata (canopy, intermediate and epigeal 
strata) and between islands. 

Our results indicate that biological integrity was better in canopy and 
ground strata, suggesting that canopy and ground-dwelling species 
communities may have detected habitat degradation earlier than those 
at the intermediate stratum (SLAM-community). Therefore, among the 
three strata, intermediate stratum seems to be the last compartment to 
reflect disturbances, or alternatively, exotic species are less efficiently 
sampled with SLAM traps (see also below). We may consider that forest 
vertical stratification of species diversity (de Souza Amorim et al., 2022; 
Haack et al., 2022; Ulyshen, 2011) explain this difference of sensitivity 
to disturbance. Insect communities at ground level can be richer than 
upper level communities (Preisser et al., 1998), but this does not hold for 
Azorean arthropod forest communities (Borges et al., unpublished data). 
In a mainland German forest, Haack et al. (2022) observed that ground 
stratum might be richer than upper stratum for common species but 
when considering rare species group the inverse occurs. In the current 
study, intermediate stratum which was sampled using SLAM (sea-land- 
air malaise trap) is composed of a unique mixed of upper and low 
stratum species communities and it is possible that species composing 
this intermediate community are not uniformly sensitive to disturbance, 
therefore blurring potential response of individual species. SLAM trap 
catches both high dispersive Azorean endemics adapted to canopy 
native forests, epigean species crawling up the trap and understory 
adapted species. Possibly, introduced species are not dominating the 
combination of these three sources of fauna sampled with SLAM traps. 

The vertical stratification of IBI values was particularly highlighted 
in Pico Island whereas the three strata were similar in Flores and Ter
ceira Islands. When the three strata where pooled, no significant dif
ference was observed between islands. This shows that pooling strata 
communities hide stratum specific signal, which produce inaccurate 
evaluation of site biological integrity, stressing the singularity of strata 

Fig. 5. IBI values at the three forest strata: Comparison of islands (FLO- Flores, PIC- Pico and TER- Terceira) at each forest stratum. Different letters above the 
boxplots indicate significant differences based on the Tukey test (p < 0.05). No significant difference was observed. 
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within the same forest site. However, although not statistically signifi
cant, IBI values in Flores sites were the lowest with the highest variance 
between sites. This observation supports conclusions of previous studies 
that placed Flores forest fragments as the least preserved forest in the 
Azorean archipelago (Borges et al., 2011). 

4.3. IBI-SLAM and IBI-Canopy in the path of multimetric indices 

Attempts to assess the quality of ecosystems rely on multimetric 
indices such as index of biotic integrity (IBI). The popularity of IBI 
started in freshwaters and marine ecosystems with the need to assess 
waters quality (Karr, 1981; Karr et al., 1986) after multiple episodes of 
pollution. IBIs present numerous virtues such as capturing the 
complexity of sites by including many parameters that considered 
individually fail to present the complexity of ecosystem functioning. 

The IBIs developed in this study are interesting in many ways. First, 
they exposed the fact that some parameters if considered individually 
might mislead the comprehension of ecosystems. For instance, abun
dance of native non-endemic species which was surprisingly positively 
related to disturbance. Second, our study reveals the need to adapt the 
IBI to the forest vertical compartment supporting studies that showed a 
stratification of community assemblages (Haack et al., 2022; Ulyshen, 
2011; Yoshida et al., 2021). Third, our methodology has successfully 
been developed and tailored to the unique arthropod communities 
found in the Azores forests. While it may not be suitable for random 
forest sites, it can serve as a valuable source of inspiration for the 
development of arthropod-based IBIs in other islands of the world. For 
island systems for which it is possible to categorize species in the colo
nization status endemic versus introduced species, we demonstrate that 
these two indicators can be highly reliable as part of a conservation 
based multimetric index. 

5. Conclusion 

The main goal of EU-wide biodiversity strategy is to establish pro
tected areas for at least 30% of land in Europe. The objective is un
reachable without efficient assessment tools. Moreover, it is critical to 
monitor island forest biota (Borges et al. 2018). We developed IBIs for 
conservation managers to assess biological integrity of forest sites in 
order to guide biodiversity management strategies in Azorean forest 
fragments. IBIs are based on arthropods and consider the stratification of 
species assemblages for more accurate decisions. 
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